\documentclass{article} \usepackage{amsmath} \begin{document} \begin{center} \section*{Project 2} Math 400, Spring 2025 \\ Due Wed 05/07 \\ Uzair Hamed Mohammed \end{center} \begin{enumerate} \item[1.] This is a problem on Gaussian quadrature and related things. \begin{enumerate} \item[a.] Explain the principle of the Gaussian quadrature. \underline{Sol}:\\ The Gaussian quadrature principle selects \( n \) nodes \( x_i \) and weights \( c_i \) such that the formula \(\int_{-1}^{1} f(x) \, dx \approx \sum_{i=0}^{n-1} c_i f(x_i)\) is exact for polynomials of the highest possible degree. For \( n \) nodes, it achieves exactness for polynomials up to degree \( 2n-1 \). The nodes are roots of orthogonal polynomials such as the Legendre polynomials, and the weights ensure exact integration for lower-degree polynomials. \item[b.] Show that the Gaussian quadrature \(\int_{-1}^{1} f(x) dx = c_0 f(x_0) + c_1 f(x_1)\) can be exact for all polynomials of degree 3 with 2 points \(x_0 = - \frac{1}{\sqrt{3}}\) and \(x_1 = \frac{1}{\sqrt{3}}\). Find \(c_0\) and \(c_1\) as well. \underline{Sol}: \begin{itemize} \item For \( f(x) = 1 \): \[ \int_{-1}^{1} 1 \, dx = 2 \implies c_0 + c_1 = 2 \] \item For \( f(x) = x \): \[ \int_{-1}^{1} x \, dx = 0 \implies c_0 \left(-\frac{1}{\sqrt{3}}\right) + c_1 \left(\frac{1}{\sqrt{3}}\right) = 0 \implies c_0 = c_1 \] \end{itemize} Solving \( c_0 + c_1 = 2 \) and \( c_0 = c_1 \), we get \( c_0 = c_1 = 1 \). \begin{itemize} \item Verification for \( f(x) = x^2 \): \[ \int_{-1}^{1} x^2 \, dx = \frac{2}{3} \quad \text{and} \quad 1 \cdot \left(\frac{1}{\sqrt{3}}\right)^2 + 1 \cdot \left(-\frac{1}{\sqrt{3}}\right)^2 = \frac{2}{3} \] \item Verification for \( f(x) = x^3 \): \[ \int_{-1}^{1} x^3 \, dx = 0 \quad \text{and} \quad 1 \cdot \left(\frac{1}{\sqrt{3}}\right)^3 + 1 \cdot \left(-\frac{1}{\sqrt{3}}\right)^3 = 0 \] \end{itemize} From this, we get: \[ \boxed{c_0 = 1}, \quad \boxed{c_1 = 1} \] \item[c.] Determine the values of \(c_i\) and \(x_i, i = 0, 1\) so that the quadrature formula \(\int_{-1}^{1} x^2 f(x) dx = c_0 f(x_0) + c_1 f(x_1)\) will be exact for all polynomials of degree 3. \begin{itemize} \item For \( f(x) = 1 \): \[ \int_{-1}^{1} x^2 \, dx = \frac{2}{3} = c_0 + c_1 \implies c_0 + c_1 = \frac{2}{3} \] \item For \( f(x) = x \): \[ \int_{-1}^{1} x^3 \, dx = 0 = c_0 x_0 + c_1 x_1 \] \item For \( f(x) = x^2 \): \[ \int_{-1}^{1} x^4 \, dx = \frac{2}{5} = c_0 x_0^2 + c_1 x_1^2 \] \item For \( f(x) = x^3 \): \[ \int_{-1}^{1} x^5 \, dx = 0 = c_0 x_0^3 + c_1 x_1^3 \] \end{itemize} Assume symmetry \( x_1 = -x_0 \). Then \( c_0 = c_1 \), and \( c_0 = c_1 = \frac{1}{3} \). Substituting into \( c_0 x_0^2 + c_1 x_1^2 = \frac{2}{5} \): \[ \frac{2}{3} x_0^2 = \frac{2}{5} \implies x_0 = \sqrt{\frac{3}{5}} \] \[ \boxed{c_0 = \frac{1}{3}}, \quad \boxed{c_1 = \frac{1}{3}}, \quad \boxed{x_0 = \sqrt{\frac{3}{5}}}, \quad \boxed{x_1 = -\sqrt{\frac{3}{5}}} \] \end{enumerate} \item[2.] Mass spectrometry analysis gives a series of peak height readings for various ion masses. For each peak, the height \(h_i\) is contributed to by various constituents (measured by the index \(j\)). The \(j^{th}\) component with per unit concentration \(p_j\) makes the contribution \(c_{ij}\) to the \(i^{th}\) peak, so that the relation \(h_i = \sum_{j=1}^{n} c_{ij} p_j\) holds. \(n\) is the number of components present. Carnahan (1964) gives the \(c_{ij}\) values shown in the table below: \[ \begin{array}{|c|c|c|c|c|c|c|} \hline \textrm{Peak number} & \textrm{Unknown} & CH_4 & C_2 H_4 & C_2 H_6 & C_3 H_6 & C_3 H_8 \\ \hline 1 & & 0.165 & 0.202 & 0.317 & 0.234 & 0.182 \\ 2 & & 27.7 & 0.862 & 0.062 & 0.073 & 0.131 \\ 3 & & & 22.35 & 13.05 & 4.42 & 6.001 \\ 4 & & & & 11.28 & 0 & 1.11 \\ 5 & & & & & 9.85 & 1.684 \\ \hline \end{array} \] If a sample had measured peak heights \(h_i = 5.20, h_2 = 61.7, h_3 = 149.2, h_4 = 79.4\), and \(h_5 = 89.3\). Calculate the values of \(p_j\) for each component. The total of all the \(p_j\) values was 51.53. Use Jacobi's and Gauss-Seidel iteration approaches, till adjacent iterations is within \(10^{-6}\). \textbf{Requirements}: Rearrange the measurements to take advantages of the principle and strength of each iteration method. \underline{Sol}:\\ \boxed{ \begin{aligned} \text{Unknown} & : \boxed{30.0696} \\ \text{CH}_4 & : \boxed{2.1701} \\ \text{C}_2\text{H}_4 & : \boxed{0.0000} \\ \text{C}_2\text{H}_6 & : \boxed{6.6100} \\ \text{C}_3\text{H}_6 & : \boxed{8.3206} \\ \text{C}_3\text{H}_8 & : \boxed{4.3597} \\ \text{Total} & : \boxed{51.53} \end{aligned} } \end{enumerate} \end{document}