Project 2

Math 400, Spring 2025 Due Wed 05/07 Uzair Hamed Mohammed

- 1. This is a problem on Gaussian quadrature and related things.
 - a. Explain the principle of the Gaussian quadrature.

The Gaussian quadrature principle selects n nodes x_i and weights c_i such that the formula $\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{n-1} c_i f(x_i)$ is exact for polynomials of the highest possible degree. For n nodes, it achieves exactness for polynomials up to degree 2n-1. The nodes are roots of orthogonal polynomials such as the Legendre polynomials, and the weights ensure exact integration for lower-degree polynomials.

- b. Show that the Gaussian quadrature $\int_{-1}^{1} f(x)dx = c_0 f(x_0) + c_1 f(x_1)$ can be exact for all polynomials of degree 3 with 2 points $x_0 = -\frac{1}{\sqrt{3}}$ and $x_1 = \frac{1}{\sqrt{3}}$. Find c_0 and c_1 as well.
 - For f(x) = 1:

$$\int_{-1}^{1} 1 \, dx = 2 \implies c_0 + c_1 = 2$$

• For f(x) = x:

$$\int_{-1}^{1} x \, dx = 0 \implies c_0 \left(-\frac{1}{\sqrt{3}} \right) + c_1 \left(\frac{1}{\sqrt{3}} \right) = 0 \implies c_0 = c_1$$

Solving $c_0 + c_1 = 2$ and $c_0 = c_1$, we get $c_0 = c_1 = 1$.

• Verification for $f(x) = x^2$:

$$\int_{-1}^{1} x^2 dx = \frac{2}{3} \quad \text{and} \quad 1 \cdot \left(\frac{1}{\sqrt{3}}\right)^2 + 1 \cdot \left(-\frac{1}{\sqrt{3}}\right)^2 = \frac{2}{3}$$

• Verification for $f(x) = x^3$:

$$\int_{-1}^{1} x^3 dx = 0 \quad \text{and} \quad 1 \cdot \left(\frac{1}{\sqrt{3}}\right)^3 + 1 \cdot \left(-\frac{1}{\sqrt{3}}\right)^3 = 0$$

From this, we get:

$$\boxed{c_0 = 1}, \quad \boxed{c_1 = 1}$$

c. Determine the values of c_i and $x_i, i = 0, 1$ so that the quadrature formula $\int_{-1}^{1} x^2 f(x) dx = c_0 f(x_0) + c_1 f(x_1)$ will be exact for all polynomials of degree 3.

1

• For f(x) = 1:

$$\int_{-1}^{1} x^2 dx = \frac{2}{3} = c_0 + c_1 \implies c_0 + c_1 = \frac{2}{3}$$

• For f(x) = x:

$$\int_{-1}^{1} x^3 dx = 0 = c_0 x_0 + c_1 x_1$$

• For $f(x) = x^2$:

$$\int_{-1}^{1} x^4 dx = \frac{2}{5} = c_0 x_0^2 + c_1 x_1^2$$

• For $f(x) = x^3$:

$$\int_{-1}^{1} x^5 dx = 0 = c_0 x_0^3 + c_1 x_1^3$$

Assume symmetry $x_1=-x_0$. Then $c_0=c_1$, and $c_0=c_1=\frac{1}{3}$. Substituting into $c_0x_0^2+c_1x_1^2=\frac{2}{5}$:

$$\frac{2}{3}x_0^2 = \frac{2}{5} \implies x_0 = \sqrt{\frac{3}{5}}$$

$$c_0 = \frac{1}{3}$$
, $c_1 = \frac{1}{3}$, $x_0 = \sqrt{\frac{3}{5}}$, $x_1 = -\sqrt{\frac{3}{5}}$

2. Mass spectrometry analysis gives a series of peak height readings for various ion masses. For each peak, the height h_i is contributed to by various constituents (measured by the index j). The j^{th} component with per unit concentration p_j makes the contribution c_{ij} to the i^{th} peak, so that the relation $h_i = \sum_{j=1}^n c_{ij}p_j$ holds. n is the number of components present. Carnahan (1964) gives the c_{ij} values shown in the table below:

Peak number	Unknown	CH_4	C_2H_4	C_2H_6	C_3H_6	C_3H_8
1		0.165	0.202	0.317	0.234	0.182
2		27.7	0.862	0.062	0.073	0.131
3			22.35	13.05	4.42	6.001
4				11.28	0	1.11
5					9.85	1.684

If a sample had measured peak heights $h_i = 5.20, h_2 = 61.7, h_3 = 149.2, h_4 = 79.4$, and $h_5 = 89.3$. Calculate the values of p_j for each component. The

total of all the p_j values was 51.53. Use Jacobi's and Gauss-Seidel iteration approaches, till adjacent iterations is within 10^{-6} .

Requirements: Rearrange the measurements to take advantages of the principle and strength of each iteration method.

Sol: