Updates to README, addition of plotting script and sample data
This commit is contained in:
parent
5d358e01dd
commit
9185be7074
@ -89,4 +89,9 @@ or
|
|||||||
|
|
||||||
When you run each code, it will iterate through the set of problem sizes predefined inside benchmark.cpp
|
When you run each code, it will iterate through the set of problem sizes predefined inside benchmark.cpp
|
||||||
|
|
||||||
|
# Building and running the codes on Cori@NERSC
|
||||||
|
|
||||||
|
Please refer to lecture slides for additional information about accessing Cori, building your code there, and running your code there.
|
||||||
|
|
||||||
|
|
||||||
# EOF
|
# EOF
|
||||||
|
|||||||
62
plot_3vars.py
Normal file
62
plot_3vars.py
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
"""
|
||||||
|
|
||||||
|
E. Wes Bethel, Copyright (C) 2022
|
||||||
|
|
||||||
|
October 2022
|
||||||
|
|
||||||
|
Description: This code loads a .csv file and creates a 3-variable plot
|
||||||
|
|
||||||
|
Inputs: the named file "sample_data_3vars.csv"
|
||||||
|
|
||||||
|
Outputs: displays a chart with matplotlib
|
||||||
|
|
||||||
|
Dependencies: matplotlib, pandas modules
|
||||||
|
|
||||||
|
Assumptions: developed and tested using Python version 3.8.8 on macOS 11.6
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
fname = "sample_data_3vars.csv"
|
||||||
|
df = pd.read_csv(fname, comment="#")
|
||||||
|
print(df)
|
||||||
|
|
||||||
|
var_names = list(df.columns)
|
||||||
|
|
||||||
|
print("var names =", var_names)
|
||||||
|
|
||||||
|
# split the df into individual vars
|
||||||
|
# assumption: column order - 0=problem size, 1=blas time, 2=basic time
|
||||||
|
|
||||||
|
problem_sizes = df[var_names[0]].values.tolist()
|
||||||
|
code1_time = df[var_names[1]].values.tolist()
|
||||||
|
code2_time = df[var_names[2]].values.tolist()
|
||||||
|
code3_time = df[var_names[3]].values.tolist()
|
||||||
|
|
||||||
|
plt.title("Comparison of 3 Codes")
|
||||||
|
|
||||||
|
xlocs = [i for i in range(len(problem_sizes))]
|
||||||
|
|
||||||
|
plt.xticks(xlocs, problem_sizes)
|
||||||
|
|
||||||
|
plt.plot(code1_time, "r-o")
|
||||||
|
plt.plot(code2_time, "b-x")
|
||||||
|
plt.plot(code3_time, "g-^")
|
||||||
|
|
||||||
|
#plt.xscale("log")
|
||||||
|
#plt.yscale("log")
|
||||||
|
|
||||||
|
plt.xlabel("Problem Sizes")
|
||||||
|
plt.ylabel("runtime")
|
||||||
|
|
||||||
|
varNames = [var_names[1], var_names[2], var_names[3]]
|
||||||
|
plt.legend(varNames, loc="best")
|
||||||
|
|
||||||
|
plt.grid(axis='both')
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# EOF
|
||||||
8
sample_data_3vars.csv
Normal file
8
sample_data_3vars.csv
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
# author: E. Wes Bethel, Oct 2022
|
||||||
|
# sample data for use with the plot_3vars.py file
|
||||||
|
Problem Size,code 1,code 2,code 3
|
||||||
|
64,0.00044,0.00128,0.00759
|
||||||
|
128,0.00061,0.00949,0.05974
|
||||||
|
256,0.00236,0.0875,0.20877
|
||||||
|
512,0.01201,0.1418,0.89089
|
||||||
|
1024,0.07743,0.81365,3.04055
|
||||||
|
Loading…
Reference in New Issue
Block a user