Updated Python scripts' logic

This commit is contained in:
uzy lol 2024-10-24 21:06:10 -07:00
parent 2f377907e3
commit 2c802509a0
5 changed files with 53 additions and 39 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

View File

@ -59,7 +59,6 @@ plt.title('Problem Size vs. MFLOP/s')
plt.xlabel('Problem Size')
plt.ylabel('MFLOP/s')
plt.legend()
plt.savefig('mflops_plot.png')
# Plot Memory Bandwidth Utilization
plt.figure()
@ -70,7 +69,6 @@ plt.title('Problem Size vs. Memory Bandwidth Utilization')
plt.xlabel('Problem Size')
plt.ylabel('Memory Bandwidth Utilization (%)')
plt.legend()
plt.savefig('memory_bandwidth_plot.png')
# Plot Memory Latency
plt.figure()
@ -81,6 +79,5 @@ plt.title('Problem Size vs. Memory Latency')
plt.xlabel('Problem Size')
plt.ylabel('Memory Latency')
plt.legend()
plt.savefig('memory_latency_plot.png')
plt.show()

View File

@ -19,51 +19,68 @@ Assumptions: developed and tested using Python version 3.8.8 on macOS 11.6
import pandas as pd
import matplotlib.pyplot as plt
plot_fname = "myplot.png"
# Constants for calculations
OPS = 1e6 # 1 million operations
BYTES_ACCESSED = 1e9 # Example: 1 GB accessed
PEAK_MEMORY_BANDWIDTH = 100 # Example: 100 GB/s
MEMORY_ACCESSES = 1e6 # Example: 1 million memory accesses
# Read the CSV file
fname = "benchmark_data.csv"
df = pd.read_csv(fname, comment="#")
print(df)
var_names = list(df.columns)
# Extract columns
problem_sizes = df['Problem Size'].values.tolist()
elapsed_times_direct = df['sum_direct'].values.tolist()
elapsed_times_indirect = df['sum_indirect'].values.tolist()
elapsed_times_vector = df['sum_vector'].values.tolist()
print("var names =", var_names)
# Calculate MFLOP/s
mflops_direct = [OPS / time for time in elapsed_times_direct]
mflops_indirect = [OPS / time for time in elapsed_times_indirect]
mflops_vector = [OPS / time for time in elapsed_times_vector]
# split the df into individual vars
# assumption: column order - 0=problem size, 1=blas time, 2=basic time
# Calculate Memory Bandwidth Utilization (%)
memory_bandwidth_direct = [(BYTES_ACCESSED / time) / PEAK_MEMORY_BANDWIDTH * 100 for time in elapsed_times_direct]
memory_bandwidth_indirect = [(BYTES_ACCESSED / time) / PEAK_MEMORY_BANDWIDTH * 100 for time in elapsed_times_indirect]
memory_bandwidth_vector = [(BYTES_ACCESSED / time) / PEAK_MEMORY_BANDWIDTH * 100 for time in elapsed_times_vector]
problem_sizes = df[var_names[0]].values.tolist()
code1_time = df[var_names[1]].values.tolist()
code2_time = df[var_names[2]].values.tolist()
code3_time = df[var_names[3]].values.tolist()
# Calculate Memory Latency
memory_latency_direct = [time / MEMORY_ACCESSES for time in elapsed_times_direct]
memory_latency_indirect = [time / MEMORY_ACCESSES for time in elapsed_times_indirect]
memory_latency_vector = [time / MEMORY_ACCESSES for time in elapsed_times_vector]
# Plot MFLOP/s
plt.figure()
plt.plot(problem_sizes, mflops_direct, label='Direct')
plt.plot(problem_sizes, mflops_indirect, label='Indirect')
plt.plot(problem_sizes, mflops_vector, label='Vector')
plt.title('Problem Size vs. MFLOP/s')
plt.xlabel('Problem Size')
plt.ylabel('MFLOP/s')
plt.legend()
plt.savefig('mflops_plot.png')
plt.title("Comparison of 3 Codes")
xlocs = [i for i in range(len(problem_sizes))]
plt.xticks(xlocs, problem_sizes)
plt.plot(code1_time, "r-o")
plt.plot(code2_time, "b-x")
plt.plot(code3_time, "g-^")
#plt.xscale("log")
#plt.yscale("log")
plt.xlabel("Problem Sizes")
plt.ylabel("runtime")
varNames = [var_names[1], var_names[2], var_names[3]]
plt.legend(varNames, loc="best")
plt.grid(axis='both')
# save the figure before trying to show the plot
plt.savefig(plot_fname, dpi=300)
# Plot Memory Bandwidth Utilization
plt.figure()
plt.plot(problem_sizes, memory_bandwidth_direct, label='Direct')
plt.plot(problem_sizes, memory_bandwidth_indirect, label='Indirect')
plt.plot(problem_sizes, memory_bandwidth_vector, label='Vector')
plt.title('Problem Size vs. Memory Bandwidth Utilization')
plt.xlabel('Problem Size')
plt.ylabel('Memory Bandwidth Utilization (%)')
plt.legend()
plt.savefig('memory_bandwidth_plot.png')
# Plot Memory Latency
plt.figure()
plt.plot(problem_sizes, memory_latency_direct, label='Direct')
plt.plot(problem_sizes, memory_latency_indirect, label='Indirect')
plt.plot(problem_sizes, memory_latency_vector, label='Vector')
plt.title('Problem Size vs. Memory Latency')
plt.xlabel('Problem Size')
plt.ylabel('Memory Latency')
plt.legend()
plt.savefig('memory_latency_plot.png')
plt.show()
# EOF